エンジニアなら知っておきたいAIのキホン 機械学習・統計学・アルゴリズムをやさしく解説

エディターレビュー
本書は、Think IT連載「ビジネスに活用するためのAIを学ぶ」に、筆者の自社Webサイトで公開中のブログ「AI技術をぱっと理解する(基礎編)」
を加え、さらに加筆・修正したAI入門書。これからAIを学ぶエンジニアや過去にAIを学習したが挫折してしまったエンジニア向けに、AIの基礎と
全体像を解説し「AIとは何か」「AIで何ができるのか」をイメージできるようにした。

本書の特長は、古い歴史には触れず、(1)ディープラーニング登場以降の5年間の流れを知り(過去)、(2)今のAI技術の全体像を把握し(現在)、(3)5年後の
AI活用イメージを掴む(未来)、の3点。書き下ろしコラムによるていねいな補足もあり、広大で難解なAIの世界をやさしく学ぶことができる。

全3部構成。
●第1部「人工知能の基礎を理解する」では、AIの基礎と全体像をしっかり理解できるように解説。
●第2部「機械学習のアルゴリズムを学ぶ」では、AIの心臓部となる<機械学習><統計学><アルゴリズム>の3要素とその関係を解説。<機械学習>には
「教師あり学習」「教師なし学習」「強化学習」などが、その背後には「回帰」「分類」「クラスタリング」などの<統計学>があり、その解を求める
方法には「決定木」「サポートベクターマシーン」「k平均法」など、多くの<アルゴリズム>がある。これらの三角関係をやさしく紐解く。
●第3部「ビジネスに活用するための人工知能を学ぶ」では、著者の調査による最新動向を踏まえ、AIビジネスの将来について業界別に考察。
RPA (Robotic Process Automation) の現状についても解説する。

※この商品は固定レイアウトで作成されており、タブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。
購入前にお使いの端末で無料サンプルをお試しください。
Amazonレビュー
amazon検索